z^2-2(1+i)z+2i=0

Simple and best practice solution for z^2-2(1+i)z+2i=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for z^2-2(1+i)z+2i=0 equation:


Simplifying
z2 + -2(1 + i) * z + 2i = 0

Reorder the terms for easier multiplication:
z2 + -2z(1 + i) + 2i = 0
z2 + (1 * -2z + i * -2z) + 2i = 0

Reorder the terms:
z2 + (-2iz + -2z) + 2i = 0
z2 + (-2iz + -2z) + 2i = 0

Reorder the terms:
2i + -2iz + -2z + z2 = 0

Solving
2i + -2iz + -2z + z2 = 0

Solving for variable 'i'.

Move all terms containing i to the left, all other terms to the right.

Add '2z' to each side of the equation.
2i + -2iz + -2z + 2z + z2 = 0 + 2z

Combine like terms: -2z + 2z = 0
2i + -2iz + 0 + z2 = 0 + 2z
2i + -2iz + z2 = 0 + 2z
Remove the zero:
2i + -2iz + z2 = 2z

Add '-1z2' to each side of the equation.
2i + -2iz + z2 + -1z2 = 2z + -1z2

Combine like terms: z2 + -1z2 = 0
2i + -2iz + 0 = 2z + -1z2
2i + -2iz = 2z + -1z2

Reorder the terms:
2i + -2iz + -2z + z2 = 2z + -2z + -1z2 + z2

Combine like terms: 2z + -2z = 0
2i + -2iz + -2z + z2 = 0 + -1z2 + z2
2i + -2iz + -2z + z2 = -1z2 + z2

Combine like terms: -1z2 + z2 = 0
2i + -2iz + -2z + z2 = 0

The solution to this equation could not be determined.

See similar equations:

| -1/5x5 | | 4a+2/16b+4 | | (g+4)-3g+1=9 | | X/4+10=15 | | 83/96=x/100 | | 5x+24/6 | | 5x(3+8+3x-x)=19-15+2x | | 2w+2(w+4.24)=136.5 | | .30S=S-140 | | (2x^2)+234x+4320=0 | | (10x-10)+(4x+8)=180 | | 75x-25x^2=0 | | 12x-3=18x+1 | | 72(t/60)=60(t+12)/60 | | (5m)-(2(-n))= | | 75/8x10/13 | | 140+14x=x+16 | | z^2-iz+1=0 | | 60-2x=16x+18 | | -3-(-4)=x/4 | | -2u+2=2(-u+1) | | 2xsquared+234+2160=0 | | 2[2+3]=-6[x+9] | | 3y^2-9=9 | | -0.4*(-0.4)=x | | 7/4x=21 | | 8=m+11 | | x^2=30x | | s+3.5s+10s=55 | | 3m=5(m+3)-3 | | 2(8+p)=2 | | (4/b^-2)^2 |

Equations solver categories